

Accelerating Applications with the Vitis™ Unified Environment Software

3 days - 21 hours

OBJECTIVES

- After completing this training, you will have the necessary skills to:
 - o 1 Explain how the Vitis unified software environment helps software developers
 - $\circ\,$ 2 Describe how the FPGA architecture lends itself to parallel computing, as well as the ALVEO boards
 - o 3 Describe the Vitis execution model (OpenCL API)
 - 4 Profile the design using the Vitis analysis tool
 - o 5 Create kernels from C, C++ or RTL IP using the RTL kernel creation wizard
 - $\circ~$ 6 Apply host code and kernel optimization techniques
 - o 7 Describe existing libraries and create an extensible platform

PREREQUISITES

- Basic knowledge of AMD FPGA architecture
- Comfort with the C/C++ programming language
- Software development flow

CONCERNED PUBLIC

- Technicians and Engineers in Digital Electronics
- All our training courses are given at a distance and are accessible to people with reduced mobility.
- Our partner AGEFIPH accompanies us to implement the necessary adaptations related to your disability.

NOTES

• Release date: 22/05/2023

CHAPTERS

DAY 1

- Objective 1
 - Introduction to the Vitis Unified Software Platform {Lecture}
 - Vitis IDE Tool Overview {Lecture, Labs}
 - Vitis Command Line Flow {Lecture, Labs}
- Objective 2
 - Introduction to Hardware Acceleration {Lecture}
 - Alveo Data Center Accelerator Cards Overview {Lecture}
 - Getting Started with Alveo Data Center Accelerator Cards {Lecture}

DAY 2

- Objective 3
 - Vitis Execution Model and XRT {Lecture, Labs}
 - Synchronization {Lecture, Lab}
 - NDRanges {Lecture}

- Objective 4
 - Profiling {Lecture}
 - Debugging {Lecture}
- Objective 5
 - Introduction to C/C++ based Kernels {Lecture, Lab}

DAY 3

- Objective 5
 - Using the RTL Kernel Wizard to Reuse Existing IP as Accelerators {Lecture, Lab}
- Objective 6
 - Optimization Methodology {Lecture}
 - C/C++ based Kernel Optimization {Lecture}
 - Host Code Optimization {Lecture}
 - o Optimizing the Performance of the Design {Lecture, Lab}
- Objective 7
 - Vitis Accelerated Libraries {Lecture}
 - Creating a Vitis Embedded Acceleration Platform (Edge) {Lecture}

TEACHING METHODS

- Inter-company online training :
 - Presentation by Webex by Cisco

- Provision of course material in PDF format
- Labs on Cloud PC by RealVNC

METHODS OF MONITORING AND ASSESSMENT OF RESULTS

- Attendance sheet
- Evaluation guestionnaire
- Evaluation sheet on:
 - o Technical questionnaire
 - o Result of the Practical Works
 - Validation of Objectives
- Presentation of a certificate with assessment of prior learning

SUPPORT

- Authorized Trainer Provider AMD : Engineer Electronics and Telecommunications ENSIL
 - o Expert AMD FPGA Language VHDL/Verilog RTL Design
 - Expert AMD SoC & MPSoC Language C/C++ System Design
 - o Expert DSP & AMD RFSoC HLS Matlab Design DSP RF
 - o Expert AMD Versal Al Engines Heteregenous System Architect

PC RECOMMENDED

- Software Configuration :
 - WebEx Cisco
 - o RealVNC Viewer

- Vitis 2022.2
- Hardware configuration:
 - o Recent computer (i5 or i7)
 - o OS Linux 64-bits
 - o At least 16GB RAM
 - o Display resolution recommended 1920x1080

PARTNERS

Authorized Training Provider

CONTACT

Administratif / Formateur : (+33) 06 74 52 37 89

info@mvd-training.com

